There’s a common misconception that farms are simple places. While that’s never particularly been the case, modern agriculture is impressively complex and technologically sophisticated, and is becoming more so with the introduction of a wide array of sensors. We talked with Adam Drobot, IEEE Senior member and Chair of the IEEE Internet of Things Activities Board about the types of sensors being incorporated into farms, how they’ve come into existence, and where sensing is headed in the next few years.

IEEE: What is “crop field sensing,” and how does it work?

Adam: The sensors we have today (whether video, hyperspectral or infrared) allow us to understand many of the conditions of plants in the field. The sensors can be based on different platforms, from satellites and high altitude aircraft to smaller drones that are flown and controlled locally, to permanent sensors mounted on structures that overlook the field. The data from these sensors is used to understand the spatially-resolved field conditions and how the crop is progressing. Interpreting sensor data and the spatial distribution can be used to determine how the field should be managed to achieve the best yields, and where and when to harvest the crops.

IEEE: What types of sensors will we be seeing on plants in the future?

Adam: Miniaturized integrated sensors that are low-cost and can be placed on individual plants is one direction we could see. It all depends on how the cost can be reduced enough to match the economics of farming.

IEEE: What are the key technological advancements that would allow for the creation of cheap, miniature sensors?

Adam: The use of basic components from consumer electronics where large markets drive economies of scale. The best examples are cheap cameras that now cost a few dollars because of smartphone production volumes, accelerometers from MEMS technologies, and other developments that come from system-on-a-chip (SOC) design and manufacturing techniques.

IEEE: What role do satellites play in assessing the condition of plants?

Adam: Two roles: An increasing number of satellites use high resolution sensors – both optical and hyperspectral – to improve techniques for interpreting sounding data. There are also many more low Earth orbit (LOE) satellites, whose arrays provide much better coverage, both geographically and in field re-visit rates. The second role is as communications relays for ground sensors in sparsely-populated and under-resourced areas.

IEEE: What role do drones play in assessing the condition of plants?

Adam: Great potential – they’re just getting started. Because they can get right to where the action is, drones can be used to fly instruments that would not fit or work on satellites. An example is acoustic sensors used to identify pests and animals, data that’s not possible to gather from satellites. A drone can also pick up a soil or plant sample that a satellite cannot.

To learn more about the IoT’s role in agriculture, check out our latest hot topic. There’s also an IEEE Internet of Things Initiative that regularly discusses similar topics. They’re hosting a Vertical and Topical Summit on Agriculture this week in Tuscany, Italy, which will cover the whole agricultural life cycle – from growth, to processing, to distribution, retailing and consumption of food products –  featuring experts and leaders from all over the world.

Written by IEEE on May 7, 2018